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Abstract. UML is applied in the design of a pervasive healthcare mid-
dleware system for the hospitals in Aarhus County, Denmark. It works
well for the modelling of static aspects of the system, but with respect
to describing the behaviour, UML is not sufficient. This paper explains
why and, as a remedy, suggests to supplement the UML models with
behaviour descriptions in the modelling language Coloured Petri Nets,
CPN. CPN models are executable and fine-grained, and a combined use
of UML and CPN thus supports design-time investigation of the detailed
behaviour of system components. In this way, the behavioural conse-
quences of alternative design proposals may be evaluated and compared,
based on models and prior to implementation.

Keywords: Executable models, detailed behaviour, Petri nets, CPN,
system design, middleware, pervasive and mobile computing, supple-
menting UML.

1 Introduction

This paper considers design of a system to support pervasive and mobile com-
puting [3, 6] at hospitals, the pervasive healthcare middleware system, PHM [1].
The system is being developed in a joint project by the hospitals in Aarhus
County, Denmark, the software company Systematic Software Engineering [22],
and the Centre for Pervasive Computing [17] at the University of Aarhus.

PHM will be part of Aarhus County’s new electronic patient record, EPR [16],
a comprehensive, general-purpose hospital IT system with a budget of approxi-
mately 15 million US dollars. EPR will be initially fielded later this year and put
into full operation in 2004. The first version of EPR is made available from desk-
top PCs placed in hospital offices. However, the EPR users, i.e., the nurses and
doctors, are away from their offices and on the move a lot of the time, e.g., seeing
patients in the wards. Therefore, stationary desktop PCs in hospital offices are
insufficient to support the hospital work processes in the best way, and taking
advantage of the emerging possibilities for pervasive and mobile computing is
crucial for the next version of EPR.

In the design of PHM, UML [12, 14] is applied, primarily to model static as-
pects. However, the PHM design must also address a number of behavioural and



dynamic aspects applicable to distributed systems in general, and to pervasive
and mobile systems in particular. UML, as it is currently standardised, has some
shortcomings that prevent us from expressing key behavioural aspects in terms
of UML models only. To overcome these shortcomings, Coloured Petri Nets,
CPN [9,10,18], is used as a supplement to UML. CPN is a mature and well-
proven modelling language suitable to describe the behaviour of systems with
characteristics like concurrency, resource sharing, and synchronisation. The per-
spectives offered by UML state machines and activity diagrams are combined in
CPN, in the sense that focus is equally balanced on states and activities, and
their interrelations, in the same model. The main contribution of this paper is
to describe and justify a combined use of UML and CPN for the design of PHM.

The paper is structured as follows: Section 2 introduces the session manager
component of PHM, whose design will be the focus of discussion in this paper.
Section 3 pinpoints a number of shortcomings in UML behavioural modelling.
A CPN model of the behaviour of the session manager, together with an intro-
duction to the CPN modelling language itself, is presented in Sect. 4. Section 5
justifies the combined use of UML and CPN, and the conclusions are drawn in
Sect. 6.

2 The Session Manager

PHM is a distributed system consisting of a number of components running in
parallel on various mobile and stationary computing devices, and communicating
over a wireless network. Some components run on a central background server,
while others are deployed on the mobile devices. The scope of this paper is
restricted to discussing design of the session manager component, which we
present now. For a description of the other main components of PHM, please
refer to [1].

Sessions In PHM, a session comprises a number of devices that are joined
together, sharing data, and communicating in support of some specific work
process. A session is appropriate, e.g., if a nurse wants to use her personal digital
assistant, PDA, to control a TV set in a ward in order to show an X-ray picture
to a patient. In this case, the TV and the PDA must be joined in a session.
Another example is a nurse who wishes to discuss some data, e.g., electronic
patient record data, or audio and video in a conference setting, with doctors who
are in remote locations. Here, the relevant data must be shown simultaneously
on a number of devices joined in a session, one device for the nurse and one
device for each doctor.

In general, session data is viewed and possibly edited by the users through
their devices. The PHM architecture is based on the Model-View-Controller pat-
tern [4]. The model part administers the actual data being shared and manipu-
lated in a session. Each participating device has both a viewer and a controller
component which are used as, respectively, interface to and manipulator of the



session data. Model, viewer, and controller components communicate over the
wireless network.

Session Management Sessions are managed by a session manager, which is
one of the most central and most complex components of PHM. The main classes
and relationships of concern for session management are shown in Fig. 1.

inactive | «

. Device

active

SessionManager

managed
Fig. 1. Session management class diagram.

A session manager manages zero to any number of sessions, and a session
comprises one or more devices. Seen from the point of view of a session manager,
a device is either inactive, i.e., not currently participating in any session, or
active, i.e., participating in some session. A device participates in at most one
session at a time.

The operations that a session manager must provide can be grouped into
three main functional areas:

1. Configuration management: Initiation, reconfiguration (i.e., supporting de-
vices dynamically joining and leaving), and termination of sessions.

2. Lock management: Locking of session data. Session data is shared and must
be locked by a device, which wants to edit it.

3. Viewer/controller management: Change of viewers and controllers for active
devices, e.g., if a nurse enters a room containing a TV, she may wish to
view something on the large TV screen instead of on her small PDA display.
In this case, viewer and controller replacement on the PDA and the TV is
needed.

Devices interact with a session manager by invoking its operations. One in-
teraction scenario is shown in Fig. 2, which illustrates

the communication between a SessionManager object and two Device ob-
jects, d1 and d2. First, d2 creates a session, which gets the session identifier 1.
The session manager responds to the creation request by providing d2 with a
default viewer and a default controller for the new session. Then, d1 joins the
session, and also gets a default viewer and a default controller from the ses-
sion manager. At some point, d1 locks the session, probably does some editing,
commits, and later releases the lock. Finally, d2 and then d1 leave the session.

3 Shortcomings in UML Behavioural Modelling

Figure 2 is an example illustrating one single possible sequence of interactions
between a session manager and some devices. In the session manager design, of
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Fig. 2. Session manager / device communication sequence diagram.

course much more is needed. It is crucial to be able to specify and investigate the
general behavioural properties of session management. This requires specification
of both the individual behaviour of device and session manager objects, and the
combined behaviour when these objects interact. Therefore, it was attempted
to create communicating state machines for the SessionManager and Device
classes, and subsequently investigate their individual and combined behaviour.
In this process, a number of severe problems were encountered. The problems
that will be discussed in this paper are described below, and are all instances of
more general shortcomings in UML behavioural modelling.

Execution The first shortcoming is lack of executable models. Without ex-
ecutable models, it is in practice impossible to investigate behavioural conse-
quences of various design proposals for session management, prior to implemen-
tation. Executable models presume a well-defined formal execution semantics,
which UML is currently lacking — no kind of UML diagram as defined in the
current standard [12] is executable.

We are well aware that if this problem was the only one, it might be alleviated
by using UML tools from, e.g., I-Logix’s Rhapsody suite [20] or Rational’s Rose
RealTime [21] that do offer execution of UML behavioural diagrams — with
execution algorithms which are, by necessity, based on proprietary semantic
decisions. We are also aware that a formal execution semantics will most likely
sooner or later be part of the UML standard (but we need it now for the PHM
project). State machines already have an informal, textually described semantics
in the current standard [12], and many proposals to define a formal semantics
for state machines have been published, e.g., [2,11].

Dependencies The state machines for the SessionManager and Device classes
are closely interrelated. For both classes, all state changes of concern are con-



sequences of devices invoking operations in a session manager. We have had
difficulties in describing individual state machines for the two classes, while at
the same time properly capturing their communicating behaviour.

The difficulties are caused by a number of dependencies between the three
main functional areas of the session manager, e.g., there is a dependency between
lock management and configuration management, because a device in the process
of editing session data is not allowed to abruptly leave the session. We require
that the lock is explicitly released before permission to leave can be granted.

It is difficult to capture the dependencies in a proper way with state machines.
Undesired interferences between the three main functional areas must be pre-
cluded, e.g., that a device loses its lock on session data during viewer/controller
replacement — replacements are not atomic operations; a device first detaches the
old and then attaches a new viewer/controller, and is temporarily suspended in
between. We have tried to use both concurrent and-states and the history mech-
anism of state machines (the latter is controversial [15]), but have not been
able to describe the dependencies between the three main functional areas in a
satisfactory way.

In theory, it is possible to create state machines that capture all dependencies,
simply by introducing a sufficient number of states, e.g., instead of two individ-
ual states like Has lock and Is replacing controller, introduce states with
more complex interpretations like Has lock and is replacing controller.
However, the approach does not scale well — the size of the state machines grows
quickly with the number of dependencies to be modelled. As an example, state
machines are not feasible to describe a more fine-grained locking scheme than the
current coarse-grained one. Allowing locking of subsets of session data requires
simultaneous management of several locks and introduces many dependencies.

Bookkeeping A key task of session management is bookkeeping by tracking
which devices are currently joined in sessions. Bookkeeping records must be
updated each time a device creates, joins, or leaves a session. Proper investigation
of session bookkeeping requires container-like data structure such as sets or lists
to be supported in the session management behavioural models, e.g., to describe
that in the current state, there are two sessions, one with devices {d1,d2,d3}
and one with devices {d4,d5}. The state notion offered by state machines does
not allow us to express this in a feasible way.

4 Session Manager Behaviour in CPN

Because of shortcomings such as the ones discussed above, instead of restricting
ourselves to UML diagrams only, we also use the modelling language of Coloured
Petri Nets, CPN [9,10, 18] for the design of PHM. In this section, we present a
CPN model describing the session manager behaviour and at the same time give
an informal primer to CPN.



CPN background CPN is one dialect of a broader category of graphical mod-
elling languages known as Petri nets [13]. Harel’s original paper on statecharts [7]
recognises Petri nets as a powerful means to describe behaviour, but notes as
a main problem that Petri nets cannot be hierarchically decomposed. Since the
publication of [7] in 1987, this problem (and many others) has been solved [9].

A CPN model resembles a board game, with strict rules that define the
possible executions of the model. The CPN modeller’s task is to specify an
appropriate board, tokens, etc. to reflect the domain being modelled. A CPN
model is a graphical structure, supplemented with inscriptions and declarations
of data types, variables, and functions. The tokens may carry complex data
values (“colours”), which is one of the main virtues of CPN. Use of functions
and expressions to manipulate data values allows the complexity of a model to
be appropriately split between graphics, and declarations and inscriptions.

CPN gives a modelling convenience corresponding to a high-level program-
ming language with support for data types, modules, and, indeed, hierarchical
decomposition.

Model overview A CPN model is structured as a set of modules that have well-
defined relations between them. The CPN model of the session manager consists
of four modules, a top-level module SessionManager, shown in Fig. 3, and a
module for each main functional area, ConfigurationManager, LockManager,
and ViewCtrManager.

DEVICE
ConfigurationManager —_ — _ LockManager
SESSION

ViewCtrManager

DEVICEXVIEWERXCONTROLLER
Fig. 3. SessionManager module.

The boxes in the figure are substitution transitions, corresponding to other
modules of the model. Substitution transitions are the CPN mechanism to de-
scribe hierarchical decomposition, and a CPN counterpart of composite states
of UML state machines.

The CPN model describes the behaviour of the session manager by tracking
the states of devices and sessions. Thus, the CPN model represents the com-
bined behaviour of interacting objects instantiated from the class diagram of
Fig. 1 (and additional objects like viewers, controllers, and locks). Space does
not allow us to present the entire model. Instead, we will describe one selected,
representative module, the ConfigurationManager, shown in Fig. 4, and intro-
duce the basic CPN concepts as we proceed.
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Fig. 4. ConfigurationManager module.

Modelling of states A CPN model describes both the states and the actions
of a system. The state of a CPN model is a distribution of tokens on the places.
Each place is drawn as an ellipse and has a data type, written in italic capital
letters, which determines the kinds of tokens the place is allowed to contain.

In Fig. 4, the session manager’s tracking of devices as being inactive or active
is modelled by the places Inactive and Active. Inactive has data type DEVICE,
whose elements are interpreted as devices, i.e., a DEVICE token on Inactive
corresponds to an inactive device. Similarly, a token on Active models an active
device, and its association with a viewer and a controller as catered for by the
data type DEVICExVIEWERxCONTROLLER. The Sessions place is used to keep
track of the ongoing sessions by containing tokens comprising lists of devices.
The elements of data type SESSION are triples (s,dl,1), where s is a session
identifier, d1 is a list of devices, and 1 is a lock indicator. The Next id place
contains an integer, used to assign a unique identifier to each session — the integer
is incremented each time a new session is created.

The figure shows the initial state of the model, where Inactive contains five
device tokens, Active and Sessions are both empty, and Next id is marked
with the integer 1.

Modelling of actions The actions of a CPN model are represented using
transitions, drawn as rectangles. In Fig. 4, the transitions correspond to session
manager operations. A transition and a place may be connected by an arc. Solid
arcs show the flow of DEVICE tokens, and dashed arcs the flow of SESSION tokens
(different graphical appearances are used only to enhance readability, and have
no formal meaning). The actions of a CPN model consist of transitions removing
tokens from input places and adding tokens to output places, often referred to
as the token game. Input/output relationship between a place and a transition
is determined by the direction of the connecting arc. The tokens removed and
added are determined by arc expressions, e.g., the expression on the arc from
the Inactive place to the Join session transition is d, where d is a variable
that can be assigned data values.



Execution semantics A transition which is ready to remove and add tokens
is said to be enabled. One condition for enabling is that appropriate tokens are
present on the input places. More precisely, it must be possible to assign data
values to the variables appearing on input arcs such that the arc expressions
evaluate to tokens available on the input places. In Fig. 4, enabling of the tran-
sition Join session requires that the place Inactive contains some DEVICE
token that can be bound to the variable d appearing in the expression of the
arc going from Inactive to Join session. Moreover, the other input place,
Sessions, must contain a token that can match the arc expression (s,dl,1),
which designates a triple consisting of a session identifier s, a device list d1,
and a lock indicator 1. An additional condition for enabling comes from the
guard, which is a boolean expression optionally assigned to a transition, and
which must evaluate to true for the transition to be enabled. The guard of the
transition Join session is the expression [joinOK d (s,dl,1)], which tests
whether it is allowed for the device d to join the session identified by (s,d1,1)
— joinOK is a function enforcing the rules for joining.

An enabled transition may occur. The occurrence of the transition Join
session models that a previously inactive device d joins a session. When d
joins a session with session id s, the token (s,dl,1) residing on the Sessions
place is updated as described by the arc expression (s,d::dl,1), which adds d
to the list d1. Moreover, d is removed from the Inactive place, augmented with
a default viewer and controller, and added to the Active place.

The individual modules of a CPN model interact when the model is executed.
In the modules of Figs. 3 and 4, places with the same name (e.g., the two
Inactive places) are conceptually glued together, thus allowing exchange of
tokens between the modules, when the token game is played.

Model perspective The perspective of the CPN model is the communication
between, and thus combined behaviour of, the objects of concern, i.e., a session
manager, devices, sessions, etc. Occurrence of any transition corresponds to in-
vocation of an operation of a session manager by some device. The result of the
occurrence reflects the corresponding state change for the invoking device and
involved session, e.g., a device changes from inactive to active, and a session is
extended with an additional device — or, in the modules not shown, a lock is set
on session data, or a device changes from active to suspended.

5 Justification of CPN use

Using CPN as a supplement to UML for modelling the session manager behaviour
is a deviation from an established standard, and therefore should be well justified.
We do this now by revisiting the UML shortcomings of Sect. 3, and arguing that
they are all alleviated by the use of CPN.

Execution CPN offers executable models, ensured by a well-defined, formal
execution semantics in terms of the enabling and occurrence rules. In the PHM



project, the behavioural consequences of alternative design alternatives are in-
vestigated via execution of CPN models. Changing a decision, e.g., the rules gov-
erning joining and leaving of sessions, can be captured and investigated quickly
by modification and execution of the session manager CPN model.

In the PHM project, the implementation of the executable CPN design mod-
els involves manual coding. This is a general drawback of CPN, whose elaborated
data type concept often is an advantage when creating models, but on the other
hand makes automatic code generation from CPN models more complicated
than, e.g., code generation from various versions of statecharts and state ma-
chines. Therefore, when use of CPN is considered in a project, a trade-off must
be made between the desire to have strong, executable design models on one
side, and ease of implementation on the other.

The formal semantics of CPN is the cornerstone for executable models. An
additional gain of the formal semantics is that CPN models may be formally veri-
fied [9]. There exists industrial-strength tools supporting both execution and ver-
ification of CPN models. The model of this paper is made with Design/CPN [19],
which is used by many companies and research institutions world-wide.

Dependencies Functional area dependencies can be properly described in CPN
because of the fine-grained nature of CPN models, in particular the support for
tokens carrying data values. In the CPN model of the session manager, e.g.,
lock management and viewer/controller management cannot interfere with each
other in an undesired way. Whether a session is locked or not is captured by a
value in the SESSION token on the Sessions place. As can be seen from Fig. 3,
replacement of viewers and controllers (modelled by the substitution transition
ViewCtrManager) does not involve the Sessions place at all.

CPN models scale well, e.g., a more fine-grained locking scheme, which as
noted in Sect. 3 results in many dependencies, can be modelled based on letting
SESSION tokens comprise lists of locks, instead of just one single lock.

Bookkeeping CPN allows use of container data types. In the session manager
model, the place Sessions has a data type defined and used with the purpose to
do the desired bookkeeping, i.e., tracking which devices are in sessions together.

6 Conclusion

The proposal to combine UML with CPN is not new, e.g., in [8] the ambitious
aim is formal verification via automatic generation of CPN models from UML
models. In the PHM project, the immediate advantages of CPN are used to ob-
tain executable and fine-grained design models, focusing on the communication
between, and thus combined behaviour of, the objects of concern. In this way,
CPN is a means to gain valuable insight early in the development project.

The scope of this paper has been a specific project, and even the design
of a specific component, but the encountered UML shortcomings and proposed



alleviation are of a general nature. Thus, in a number of projects, the early
design decisions may be improved by supplementing UML models with behaviour
models in CPN, e.g., when designing pervasive and mobile systems. However,
more work is required in order to assess the feasibility of a theoretically well-
founded and more general integration of the UML and CPN modelling languages.
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